“我国每5个成年人中就有1个心血管病患者,每10秒钟就有1人死于心血管疾病“,心血管疾病在致中国城镇与农村居民死亡疾病中占首位。因此可见,心血管疾病的预防与治疗是未来临床与科研重点关注的研究方向。转化医学这一概念的提出促进了临床实践向基础研究提出新的命题,基础研究提出可能的解决方案进行临床验证,相互转化。目前中国转化医学的研究重点在心血管疾病与肿瘤,集中在疾病的发病机制、疾病的早期非创伤性诊断、疾病的规范治疗及新药物新技术的开发等。细胞水平建立体外疾病模型从而研究相关发病机制与治疗手段,是心血管疾病关注的重要方向。流式细胞检测和显微成像,是细胞水平研究的两大传统方法。利用流式细胞技术,科研人员可以分析上万个细胞,获得每个细胞的相对大小、颗粒度和荧光信号的数值,从而得到细胞群体的各种统计数据,筛选出稀有的细胞亚群。但是传统流式细胞检测技术存在一定局限,获得高通量的同时忽略了细胞承载的丰富信息。研究人员仅仅得到散点图上的一个点,而不是真实的细胞图像,缺乏细胞形态、亚细胞器结构与荧光信号空间分布的相关信息。要想获得基于细胞图像的数据,研究人员必须借助各种显微成像设备进行观察,但显微镜能够观察到的细胞数量是非常有限的,容易遗漏稀少事件,手动分析数据耗费大量人力和时间,而且受实验人员的主观因素影响,实验结果的稳定性很差,难以提供准确的细胞群体量化与统计数据。因此,量化成像流式细胞技术(ImageStream)的出现结合了流式检测的高通量与荧光显微镜的高内涵,同时提供细胞图像与群体统计数据,给传统细胞分析带来了重大变革,在流式细胞分析、分选的传统技术之外开创了“成像流式“下一代专家级流式细胞技术的发展方向。
心脑血管研究经常涉及分离分析原位组织中的干细胞、前体细胞等,若仅仅使用传统流式分析方法,难以精确鉴定细胞。荧光显微镜又受通量的限制,难以捕获稀有现象。量化成像流式细胞技术的优势在于高功率激光器与785nm SSC专用激光器适合分析低含量细胞,结合了量化成像高内涵与传统流式分析的高通量特点,准确显示稀有细胞的形态学特性,并可进一步结合细胞表面与内部标记物确认该细胞群生物学功能。极小胚胎样干细胞(VSELs)是指人类血液及骨髓中存在的一类体积非常小、数量非常稀少的多能干细胞,被认为具有替代胚胎干细胞的潜力,其在科学界深受重视。然而,这种细胞真的存在吗?来自肯塔基大学的一个心血管疾病研究小组利用ImageStream发现了心肌缺血患者VSELs迁移到外周血的证据(图一),骨髓中这群细胞的比例仅为0.01%,表达CXCR4+、SSEA+、Oct4+和Nanog+。研究人员精确地了解到VSELs的直径约为3.6微米左右,而造血干细胞HSC的直径较大些,大约为6.5微米。对于核/质比的分析发现,VSELs的核/质比显著高于HSCs,细胞质区显著小于HSCs。组织器官受损时(如该研究证实的心肌梗死),VSELs可能从骨髓中释放入血液循环中,以参与损伤修复过程。而受损组织炎性因子或趋化因子的释放,也会影响VSELs向损伤区域或其他脏器的归巢。与此类似,ImageStream可应用与心肌组织干细胞研究,结合高通量与形态精确鉴定,研究信号通路的活化。
图一:心肌萎缩病人的极小胚胎样干细胞VSELs迁移到外周血中。Lin/CD45为造血干细胞HSCs的标记物,Oct4和CD34为极小胚胎样干细胞VSELs的标志物,7-AAD标记细胞核,该研究使用了ImageStream系统检测VSELs,显示了明场图像与biomarker的荧光成像,发现Oct4可以与细胞核共定位。
来源:Evidence of Mobilization of Pluripotent Stem Cells into Peripheral Blood ofPatients with Myocardial Ischemia.Exp Hematol. 2010 Dec; 38(12): 1131–1142.e1.
细胞自噬是一种利用溶酶体对自身细胞器进行分解、将产生的大分子物质予以回收利用的高度保守的细胞降解过程。饥饿、缺血、氧化应激等均可诱导其发生。自噬的调节也与心血管疾病相关,包括心脏肥大、缺血性心脏病、心力衰竭以及缺血-再灌注损伤。正常的细胞自噬对心肌细胞有保护作用,自噬不足或自噬过度则可促发疾病或加重病变。量化成像分析技术可以(1)借助多种细胞表面与内部标记物追踪自噬蛋白与自噬小体的变化,(2)统计自噬蛋白与溶酶体的共定位,(3)研究自噬蛋白与受体的相互作用,并可组合多种应用模块量化分析(4)细胞自噬与凋亡的关系、涉及的上下游信号分子。ImageStream技术在自噬方面的研究成果已有多篇发表于Science、Oncogene、Autophage、Journal of Immunology等高水平专业杂志。
ImageStream技术建立在传统的流式细胞术基础之上,结合了荧光显微成像技术,它具有12个检测通道,可以对流动中的每个细胞进行成像,并实现了对细胞图像各种形态学参数量化分析,获得全新的细胞形态统计学数据。ImageStream技术与传统流式细胞仪很类似,其系统平台也是由液流系统,光学系统和检测系统三大部分组成。液流系统通过注射泵将样本细胞悬液和系统鞘液注入流动室中,细胞在鞘液流的约束下聚焦在液流的中心,逐个流过检测窗口。光学系统中光源照射通过检测窗口的细胞,从而产生光信号。光源分为两种,其一用于产生明场细胞图像,另一种是用于产生荧光细胞图像的激光器。独特、定制的全固态激光器,功率高且可调节,有利于同时检测多种荧光信号或是微弱信号。本系统拥有一个独特的785 nm激光器,用于检测侧向角(SSC)参数,极大提高了该参数的检测灵敏度。光源照射细胞产生的光信号被大数值孔径的物镜收集,然后通过光路系统传递到由二向色镜构成的滤光片堆栈。光信号在这里被分成不同波段投射到CCD的相应检测通道上,产生明场细胞图像、暗场细胞图像和多个荧光通道的细胞图像,即每个细胞可以获取12副不同成像。ImageStream技术的检测系统十分独特,采用不是传统流式细胞仪的PMT检测方式,而是基于时间延迟积分技术的CCD(TDI (time delay integration) CCD)采集,保证了系统对高速运动的流体细胞也能采集高质量图像。
图二:系统性红斑狼疮SLE病人与正常人群相比,免疫细胞自噬程度增高。绿色荧光标记LC3自噬蛋白,在High高自噬情况下,LC3发生聚集。CD19、CD4、CD14分别标记B细胞、T细胞和单核细胞。来源:Autophagy is activated in systemic lupuserythematosus and required for plasmablast development.Ann Rheum Dis. 2015 May; 74(5): 912–920.
ImageStream系统配有功能强大的数据分析软件IDEAS®, 可以对每个细胞的图形进行超过100种量化参数分析。这些参数不仅包括细胞整体的散射光和荧光信号强度,还包括对细胞形态,细胞结构及亚细胞信号分布的分析。点击散点图上的点,就可以直观的看到这个点代表的细胞的图像。目前已经广泛应用于细胞信号转导、细胞共定位、细胞形态变化、胞间相互作用、细胞自噬等典型应用,从而提高了软件的易用性。另外,使用者还能够根据自身研究的特殊需要,自定义参数的设定,进行更深入的分析。因而,科学家们既可以将其应用于基础生命科学研究,如免疫学、生物化学、转录组学等等,又可以用于深入了解某些疾病的发病机制。从2005年至今,利用量化成像流式细胞技术已经发表了超过500篇的同行评议文章,其中已有多篇文章发表在Science、Nature、Immunity等顶尖杂志上,说明该技术已经得到了科研界的广泛肯定。
随着ImageStream技术的应用不断推广,科学家们已拓展了大量灵活新颖的应用。例如,量化成像流式技术可以识别20nm直径的微粒,非常适合分析心血管疾病涉及的循环微粒、微囊泡;通过多色标记,检测血小板聚集,评估血栓形成;量化分析纳米靶向药物是否有效等。相信下一代专家级流式必将助力心血管疾病细化研究。
更多ImageStream量化成像流式技术创新应用,请访问Amnis量化成像分析流式技术站